首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   6篇
安全科学   20篇
废物处理   16篇
环保管理   26篇
综合类   38篇
基础理论   19篇
污染及防治   30篇
评价与监测   8篇
社会与环境   3篇
灾害及防治   2篇
  2023年   5篇
  2022年   4篇
  2021年   1篇
  2020年   5篇
  2019年   4篇
  2018年   9篇
  2017年   8篇
  2016年   3篇
  2015年   6篇
  2014年   8篇
  2013年   9篇
  2012年   8篇
  2011年   8篇
  2010年   5篇
  2009年   12篇
  2008年   10篇
  2007年   6篇
  2006年   11篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1984年   1篇
  1981年   1篇
排序方式: 共有162条查询结果,搜索用时 734 毫秒
41.
42.
The purpose of this paper is to study metal separation from a sample composed of a mixture of the main types of spent household batteries, using a hydrometallurgical route, comparing selective precipitation and liquid-liquid extraction separation techniques. The preparation of the solution consisted of: grinding the waste of mixed batteries, reduction and volatile metals elimination using electric furnace and acid leaching. From this solution two different routes were studied: selective precipitation with sodium hydroxide and liquid-liquid extraction using Cyanex 272 [bis(2,4,4-trimethylpentyl) phosphoric acid] as extracting agent. The best results were obtained from liquid-liquid extraction in which Zn had a 99% extraction rate at pH 2.5. More than 95% Fe was extracted at pH 7.0, the same pH at which more than 90% Ce was extracted. About 88% Mn, Cr and Co was extracted at this pH. At pH 3.0, more than 85% Ni was extracted, and at pH 3.5 more than 80% of Cd and La was extracted.  相似文献   
43.
Microbial displacement in the soil is an important process for bioremediation and dispersal of wastewater pathogens. We evaluated cell movement in surface and subsurface red-yellow podzolic soil driven by advection and microbial motility and also survival of a microbial population at high pressure as is prevalent in deep soil layers. Pseudomonas fluorescens Br 12, resistant to rifampycin and kanamycin, was used as a model organism traceable in non-sterile soil. Our results showed that more than 40% of the P. fluorescens population survived under high pressure, and that microbial motility was not a major factor for its displacement in the soil. Cells were adsorbed in similar amounts to surface and subsurface soils, but more viable cells were present in the leachate of surface than in subsurface soils. The nature of this unexpected cell binding to the subsurface soil was studied by EPR, Mossbauer, NMR, and infrared techniques, suggesting iron had a weak interaction with microbes in soil. P. fluorescens movement in soil resulted mainly from convection forces rather than microbial motility. The transport of this bacterium along the transept toward groundwater encountered restricted viability, although it survived under high pressure conditions simulating those in deep soil layers.  相似文献   
44.
BACKGROUND, AIM, AND SCOPE: The subsurface at the Oak Ridge Field Research Center represents an extreme and diverse geochemical environment that places different stresses on the endogenous microbial communities, including low pH, elevated nitrate concentrations, and the occurrence of heavy metals and radionuclides, including hexavalent uranium [U(VI)]. The in situ immobilization of U(VI) in the aquifer can be achieved through microbial reduction to relatively insoluble U(IV). However, a high redox potential due to the presence of nitrate and the toxicity of heavy metals will impede this process. Our aim is to test biostimulation of the endogenous microbial communities to improve nitrate reduction and subsequent U(VI) reduction under conditions of elevated heavy metals. MATERIALS AND METHODS: Column experiments were used to test the possibility of using biostimulation via the addition of ethanol as a carbon source to improve nitrate reduction in the presence of elevated aqueous nickel. We subsequently analyzed the composition of the microbial communities that became established and their potential for U(VI) reduction and its in situ immobilization. RESULTS: Phylogenetic analysis revealed that the microbial population changed from heavy metal sensitive members of the actinobacteria, alpha- and gamma-proteobacteria to a community dominated by heavy metal resistant (nickel, cadmium, zinc, and cobalt resistant), nitrate reducing beta- and gamma-proteobacteria, and sulfate reducing Clostridiaceae. Coincidentally, synchrotron X-ray absorption spectroscopy analyses indicated that the resulting redox conditions favored U(VI) reduction transformation to insoluble U(IV) species associated with soil minerals and biomass. DISCUSSION: This study shows that the necessary genetic information to adapt to the implemented nickel stress resides in the endogenous microbial population present at the Oak Ridge FRC site, which changed from a community generally found under oligotrophic conditions to a community able to withstand the stress imposed by heavy metals, while efficiently reducing nitrate as electron donor. Once nitrate was reduced efficient reduction and in situ immobilization of uranium was observed. CONCLUSIONS: This study provides evidence that stimulating the metabolism of the endogenous bacterial population at the Oak Ridge FRC site by adding ethanol, a suitable carbon source, results in efficient nitrate reduction under conditions of elevated nickel, and a decrease of the redox potential such that sulfate and iron reducing bacteria are able to thrive and create conditions favorable for the reduction and in situ immobilization of uranium. Since we have found that the remediation potential resides within the endogenous microbial community, we believe it will be feasible to conduct field tests. RECOMMENDATIONS AND PERSPECTIVES: Biostimulation of endogenous bacteria provides an efficient tool for the successful in situ remediation of mixed-waste sites, particularly those co-contaminated with heavy metals, nitrate and radionuclides, as found in the United States and other countries as environmental legacies of the nuclear age.  相似文献   
45.
Our objectives are to evaluate inter-continental source-receptor relationships for fine aerosols and to identify the regions whose emissions have dominant influence on receptor continents. We simulate sulfate, black carbon (BC), organic carbon (OC), and mineral dust aerosols using a global coupled chemistry-aerosol model (MOZART-2) driven with NCEP/NCAR reanalysis meteorology for 1997–2003 and emissions approximately representing year 2000. The concentrations of simulated aerosol species in general agree within a factor of 2 with observations, except that the model tends to overestimate sulfate over Europe in summer, underestimate BC and OC over the western and southeastern (SE) U.S. and Europe, and underestimate dust over the SE U.S. By tagging emissions from ten continental regions, we quantify the contribution of each region's emissions on surface aerosol concentrations (relevant for air quality) and aerosol optical depth (AOD, relevant for visibility and climate) globally. We find that domestic emissions contribute substantially to surface aerosol concentrations (57–95%) over all regions, but are responsible for a smaller fraction of AOD (26–76%). We define “background” aerosols as those aerosols over a region that result from inter-continental transport, DMS oxidation, and emissions from ships or volcanoes. Transport from other continental source regions accounts for a substantial portion of background aerosol concentrations: 36–97% for surface concentrations and 38–89% for AOD. We identify the Region of Primary Influence (RPI) as the source region with the largest contribution to the receptor's background aerosol concentrations (or AOD). We find that for dust Africa is the RPI for both aerosol concentrations and AOD over all other receptor regions. For non-dust aerosols (particularly for sulfate and BC), the RPIs for aerosol concentrations and AOD are identical for most receptor regions. These findings indicate that the reduction of the emission of non-dust aerosols and their precursors from an RPI will simultaneously improve both air quality and visibility over a receptor region.  相似文献   
46.
The oxidative degradation of polyolefins in the presence of transition metal catalysts is well known in the patent and technical literature. It has been suggested that a properly designed oxidatively degradable polymer could be used in limited lifetime articles and also on those whose primary method of disposal is composting, wherein the thermal activity is used to accelerate the oxidation process. The results of a detailed study of transition metal reactivity in the presence of numerous oxidation promoting species in polyolefins are presented. The oxidative degradation of these polyolefins was demonstrated at moderate temperatures under air and in a simulated compost environment. Approaches to determining the ultimate fate of these materials are discussed.  相似文献   
47.
Energy transition is the process whereby the volume and proportion of commercial energy increases so as to replace traditional fuels as the main energy source. In South and South-East Asia the extent to which this transition has taken place varies within and between countries. In general, in the urban areas, the process is more advanced than in rural areas. It is also more advanced in the larger towns than the smaller ones and more advanced within higher income groups. In rural areas industry is a large consumer of traditional energy and many rural peoples earn their livelihoods as suppliers of traditional energy to industry. For both economic and social reasons the transition process has been slower in rural households than in urban households. This must change as for much of the rural areas of South and South-East Asia, increasing population and increasing energy demand are creating pressures on the biomass which cannot be sustained.  相似文献   
48.
49.
50.
Perchlorate is a stable anion that has been introduced into the environment through activities related to its production and use as a solid rocket propellant. Perchlorate is thought to transport through soils without being adsorbed; thus, for determination of perchlorate in soil, samples are typically extracted with water prior to analysis. The completeness of extraction depends on perchlorate existing as a free ion within the soil matrix. In this study, perchlorate extraction efficiency was evaluated with five soil types under two different oxygen states. For each soil, 30% (w/w) slurries were prepared and equilibrated under either oxic or anoxic conditions prior to spiking with a stock solution of sodium perchlorate, and the slurries were then maintained for 1-week or 1-month. At the end of the exposure, slurries were centrifuged and separated into aqueous and soil phases. After phase separation, the soil was washed first with deionized water and then with 50mM NaOH, producing second and third aqueous phases, respectively. Perchlorate concentrations in the three aqueous phases were determined using ion chromatography. The results obtained from this study suggest that matrix interference and signal suppression due to high conductivity have greater effects upon observed perchlorate concentrations by ion chromatography than does perchlorate interaction with soil. Thus, a single water extraction is sufficient for quantitative determination of perchlorate in soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号